Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria.

Identifieur interne : 000117 ( Main/Exploration ); précédent : 000116; suivant : 000118

Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria.

Auteurs : Yihao Zhang [République populaire de Chine] ; Andrew W. Bartlow [États-Unis] ; Zhenyu Wang [République populaire de Chine] ; Xianfeng Yi [République populaire de Chine]

Source :

RBID : pubmed:29736862

Descripteurs français

English descriptors

Abstract

Chemical compounds in seeds exert negative and even lethal effects on seed-consuming animals. Tannin-degrading bacteria in the guts of small mammals have been associated with the ability to digest seeds high in tannins. At the population level, it is not known if tannins influence rodent species differently according to the composition of their gut microbiota. Here, we test the hypothesis that sympatric tree species with different tannins exert contrasting effects on population fluctuations of seed-eating rodents. We collected a 10-year dataset of seed crops and rodent population sizes and sequenced 16S rRNA of gut microbes. The abundance of Apodemus peninsulae was not correlated with seed crop of either high-tannin Quercus mongolica or low-tannin Corylus mandshurica, but positively correlated with their total seed crops. Abundance of Tamias sibiricus was negatively correlated with seed crop of Q. mongolica but positively correlated with C. mandshurica. Body masses of A. peninsulae and T. sibiricus decreased when given high-tannin food; however, only the survival of T. sibiricus was reduced. The abundance of microbial genus Lactobacillus exhibiting potential tannin-degrading activity was significantly higher in A. peninsulae than in T. sibiricus. Our results suggest that masting tree species with different tannin concentrations may differentially influence population fluctuations of seed predators hosting different gut microbial communities. Although the conclusion is based on just correlational analysis of a short time-series, seeds with different chemical composition may influence rodent populations differently. Future work should examine these questions further to understand the complex interactions among seeds, gut microbes, and animal populations.

DOI: 10.1007/s00442-018-4151-1
PubMed: 29736862


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria.</title>
<author>
<name sortKey="Zhang, Yihao" sort="Zhang, Yihao" uniqKey="Zhang Y" first="Yihao" last="Zhang">Yihao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022</wicri:regionArea>
<wicri:noRegion>330022</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bartlow, Andrew W" sort="Bartlow, Andrew W" uniqKey="Bartlow A" first="Andrew W" last="Bartlow">Andrew W. Bartlow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545</wicri:regionArea>
<wicri:noRegion>87545</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhenyu" sort="Wang, Zhenyu" uniqKey="Wang Z" first="Zhenyu" last="Wang">Zhenyu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China. 004959@jxnu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022</wicri:regionArea>
<wicri:noRegion>330022</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yi, Xianfeng" sort="Yi, Xianfeng" uniqKey="Yi X" first="Xianfeng" last="Yi">Xianfeng Yi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China. ympclong@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022</wicri:regionArea>
<wicri:noRegion>330022</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29736862</idno>
<idno type="pmid">29736862</idno>
<idno type="doi">10.1007/s00442-018-4151-1</idno>
<idno type="wicri:Area/Main/Corpus">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000107</idno>
<idno type="wicri:Area/Main/Curation">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000107</idno>
<idno type="wicri:Area/Main/Exploration">000107</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria.</title>
<author>
<name sortKey="Zhang, Yihao" sort="Zhang, Yihao" uniqKey="Zhang Y" first="Yihao" last="Zhang">Yihao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022</wicri:regionArea>
<wicri:noRegion>330022</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bartlow, Andrew W" sort="Bartlow, Andrew W" uniqKey="Bartlow A" first="Andrew W" last="Bartlow">Andrew W. Bartlow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545</wicri:regionArea>
<wicri:noRegion>87545</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhenyu" sort="Wang, Zhenyu" uniqKey="Wang Z" first="Zhenyu" last="Wang">Zhenyu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China. 004959@jxnu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022</wicri:regionArea>
<wicri:noRegion>330022</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yi, Xianfeng" sort="Yi, Xianfeng" uniqKey="Yi X" first="Xianfeng" last="Yi">Xianfeng Yi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China. ympclong@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022</wicri:regionArea>
<wicri:noRegion>330022</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacteria (MeSH)</term>
<term>Feeding Behavior (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Population Dynamics (MeSH)</term>
<term>RNA, Ribosomal, 16S (MeSH)</term>
<term>Seeds (MeSH)</term>
<term>Tannins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Bactéries (MeSH)</term>
<term>Comportement alimentaire (MeSH)</term>
<term>Dynamique des populations (MeSH)</term>
<term>Graines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Tanins (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bacteria</term>
<term>Feeding Behavior</term>
<term>Humans</term>
<term>Population Dynamics</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Animaux</term>
<term>Bactéries</term>
<term>Comportement alimentaire</term>
<term>Dynamique des populations</term>
<term>Graines</term>
<term>Humains</term>
<term>Tanins</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical compounds in seeds exert negative and even lethal effects on seed-consuming animals. Tannin-degrading bacteria in the guts of small mammals have been associated with the ability to digest seeds high in tannins. At the population level, it is not known if tannins influence rodent species differently according to the composition of their gut microbiota. Here, we test the hypothesis that sympatric tree species with different tannins exert contrasting effects on population fluctuations of seed-eating rodents. We collected a 10-year dataset of seed crops and rodent population sizes and sequenced 16S rRNA of gut microbes. The abundance of Apodemus peninsulae was not correlated with seed crop of either high-tannin Quercus mongolica or low-tannin Corylus mandshurica, but positively correlated with their total seed crops. Abundance of Tamias sibiricus was negatively correlated with seed crop of Q. mongolica but positively correlated with C. mandshurica. Body masses of A. peninsulae and T. sibiricus decreased when given high-tannin food; however, only the survival of T. sibiricus was reduced. The abundance of microbial genus Lactobacillus exhibiting potential tannin-degrading activity was significantly higher in A. peninsulae than in T. sibiricus. Our results suggest that masting tree species with different tannin concentrations may differentially influence population fluctuations of seed predators hosting different gut microbial communities. Although the conclusion is based on just correlational analysis of a short time-series, seeds with different chemical composition may influence rodent populations differently. Future work should examine these questions further to understand the complex interactions among seeds, gut microbes, and animal populations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">29736862</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>187</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>667-678</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-018-4151-1</ELocationID>
<Abstract>
<AbstractText>Chemical compounds in seeds exert negative and even lethal effects on seed-consuming animals. Tannin-degrading bacteria in the guts of small mammals have been associated with the ability to digest seeds high in tannins. At the population level, it is not known if tannins influence rodent species differently according to the composition of their gut microbiota. Here, we test the hypothesis that sympatric tree species with different tannins exert contrasting effects on population fluctuations of seed-eating rodents. We collected a 10-year dataset of seed crops and rodent population sizes and sequenced 16S rRNA of gut microbes. The abundance of Apodemus peninsulae was not correlated with seed crop of either high-tannin Quercus mongolica or low-tannin Corylus mandshurica, but positively correlated with their total seed crops. Abundance of Tamias sibiricus was negatively correlated with seed crop of Q. mongolica but positively correlated with C. mandshurica. Body masses of A. peninsulae and T. sibiricus decreased when given high-tannin food; however, only the survival of T. sibiricus was reduced. The abundance of microbial genus Lactobacillus exhibiting potential tannin-degrading activity was significantly higher in A. peninsulae than in T. sibiricus. Our results suggest that masting tree species with different tannin concentrations may differentially influence population fluctuations of seed predators hosting different gut microbial communities. Although the conclusion is based on just correlational analysis of a short time-series, seeds with different chemical composition may influence rodent populations differently. Future work should examine these questions further to understand the complex interactions among seeds, gut microbes, and animal populations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yihao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bartlow</LastName>
<ForeName>Andrew W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhenyu</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China. 004959@jxnu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yi</LastName>
<ForeName>Xianfeng</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0002-8591-3620</Identifier>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China. ympclong@163.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>20161ACB20017</GrantID>
<Agency>Natural Science Foundation of Jiangxi Province</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>20171BBF60073</GrantID>
<Agency>Natural Science Foundation of Jiangxi Province</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>31760156</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="Y">Seeds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="Y">Tannins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Gut microbiome</Keyword>
<Keyword MajorTopicYN="Y">Population dynamics</Keyword>
<Keyword MajorTopicYN="Y">Rodent</Keyword>
<Keyword MajorTopicYN="Y">Seed masting</Keyword>
<Keyword MajorTopicYN="Y">Seed tannin</Keyword>
<Keyword MajorTopicYN="Y">Tannin-degrading bacteria</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29736862</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-018-4151-1</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-018-4151-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2011 Jun 24;12(6):R60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jun;32(6):1165-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16770711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2017 Jan;12 (1):12-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27734599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Med Sci. 1995 Oct;57(5):921-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8593303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Feb;70(2):1104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diagn Microbiol Infect Dis. 2010 Jan;66(1):120-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19446981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2013 Jul;82(4):814-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23461538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2015 Feb;177(2):401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25413865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2005 Jun;28(4):358-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15997709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2018 Jan;186(1):141-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29167983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2006 Jul;56(Pt 7):1693-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16825652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2016 Sep;11(5):388-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27059411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Zool. 1997 May-Jun;70(3):270-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9231400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2013 Oct 9;61(40):9517-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Jul;90(7):1996-2006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19694146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2013 Mar;82(2):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23030597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Feb;11(2):184-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17979979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 19;9(3):e91654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24646877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2017 Jan;12 (1):2-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27265119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2017 Jan;12 (1):77-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2017 Nov;12 (6):457-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28488781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2016 May;11(3):175-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27160702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 01;6:27225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2017 Nov;12 (6):468-476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28688128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2016 May;11(3):182-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2017 Nov;12 (6):477-488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28688134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2016 Jul;11(4):322-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27136188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2016 Jan;11(1):16-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26663614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Dec;37(12):1277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22161223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Zool. 2016 Jan;11(1):40-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26458303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Jun;18(6):1720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25753857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Yihao" sort="Zhang, Yihao" uniqKey="Zhang Y" first="Yihao" last="Zhang">Yihao Zhang</name>
</noRegion>
<name sortKey="Wang, Zhenyu" sort="Wang, Zhenyu" uniqKey="Wang Z" first="Zhenyu" last="Wang">Zhenyu Wang</name>
<name sortKey="Yi, Xianfeng" sort="Yi, Xianfeng" uniqKey="Yi X" first="Xianfeng" last="Yi">Xianfeng Yi</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Bartlow, Andrew W" sort="Bartlow, Andrew W" uniqKey="Bartlow A" first="Andrew W" last="Bartlow">Andrew W. Bartlow</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29736862
   |texte=   Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29736862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020